SELECTED BY LEADING AEROSPACE DEFENSE CONTRACTOR Aqueous Vets ${ }^{\ominus}$ Named a Manufacturing Partner for a Southern CA Water Treatment Facility

BACKGROUND

In August 2018, Aqueous Vets ${ }^{\circledR}\left(\mathrm{AV}^{\circledR}\right)$ was selected over existing industry incumbents to supply the Granular Activated Carbon Systems (GACS) for a Southern California Water Treatment Plant. An exhaustive review of project requirements led to selecting AV as providing the best value for this critical water quality project. The decision was based on technical approach, project management team, and proven track record. AV was contracted in the fall of 2018.

AQUEOUS VETS SCOPE

After review of the initial overall design, AV conducted a constructability review that resulted in cost reductions and design improvements. AV provided system design, manufacture, and supply of four large 12-foot diameter systems with a combined 320,000 pounds of GAC. Each system holds 80,000 pounds of GAC for
 the removal of Volatile Organic Compounds (VOCs) at the newly constructed Water Treatment Plant. The four GACS are designed to process up to 6.3 MGD, while removing multiple VOCs from groundwater treated at the site.

PROJECT LOCATION
Southern California

PROJECT TYPE
Design and
Manufacture

PROJECT TIMEFRAME
Dec. 2018 - Aug. 2019

PROJECT PHASE
In Process

AV ${ }^{\circledR}$ SCOPE OF WORK \$1,800,000

END USER
Aerospace Defense Contractor

GENERAL CONTRACTOR R. C. Foster

DESIGN ENGINEER

 Geosyntec

KEY GAC SYSTEM DESIGN \& OPERATIONAL PARAMETERS	VALUE
Number of Systems/Vessels per System	$4 / 2$
Operating Configuration	Downflow/Lead-Lag
Carbon Capacity/Volume per Vessel	$40,000 \mathrm{lbs} / 1,356 \mathrm{ft}^{3}$
Media Type	Coconut
Design Flow Rate (Total/Per System)	$6.3 \mathrm{MGD} / 1,100 \mathrm{gpm}$
Hydraulic Loading	$9.7 \mathrm{gpm} / \mathrm{ft}^{2}$
Empty Bed Contact Time @ 1,100 gpm/system	18.5 Minutes
Underdrain	Septa/External Ring Header
Overall System Height to Top of Pipe	$24^{\prime}-9^{\prime \prime}$

AqueoUSvets

